Circuits

Little Pig’s Safe House

Three Pigs Safe Room

I decided to make a safe room for the three little pigs.  When the wolf finally figures out how to blow down the brick house, they need somewhere to go.  This room is under the brick house and it is totally secure.  I started with a leftover Starbucks gift box, scraps of colored paper and cardboard, glue, copper tape, Chibi lights, a coin cell battery, Sharpee pen, and duct tape.  I also printed a tiny pig portrait from the Internet.

saferoom-material

First I mounted the Chibi lights on the back wall of the room.  Chibis are tiny LED stickers.  Each one has a positive and negative side. When place on a copper tape circuit they will light up.  

 saferoom-lights

Next I created a a switch for the lights on the outside of the box using red duct tape.

saferoom-switch

Finally I constructed the furniture, the refrigerator, the books, and the locked door with the scraps of paper.  Instead of working with patterns, I decided I was going to make myself go through the mental gymnastics of trying to figure out how to construct each piece of furniture in the room by cutting, folding, and gluing the paper.  

When the glue on them had dried, I glued them into the room.

img_5421

I didn’t face any big challenges.  After I gathered the materials, it all seemed to come together pretty easily.  

 

Thinking about how to construct each piece of furniture was really the only challenge.  I didn’t want the furniture to be made out of separate pieces of paper so I tried to cut each one into one piece of paper when was then folded and glued in sort of an origami fashion to create the final piece.  It was kind of like solving a puzzle.  I think my experience with dismantling cardboard packaging to save the cardboard helped a lot.  

Categories: Art, Circuits, Engineering, Technology | Leave a comment

Left Over Larry

I am going to call my project Larry Leftovers because I made it out of leftovers from other projects.  I started with an empty crayon box, a tuft of orange wool, a red pom-pom, two blue LEDs, two 2023 coin cell batteries, and a battery holder with an on-off switch.  I used a glue gun, needle nose pliers, hole punch, and tape.  The parts were in different places in my house (sewing room, garage, and kitchen.  I gathered everything together on the kitchen table and completed it in about twenty minutes. After gathering everything, I didn’t have to get up to find something.  But this involved planning.  In the classroom, I think all teachers do this when they plan a project – they think ahead about what materials to have available so they won’t have to go get something after the kids get started.  The kitchen table is one of my favorite places to work because it is well lit by a big bay window and I can listen to music while I work.  At school I have good lighting (unfortunately no windows) but no music.  Hmmm, should I get a little radio?  

larry-parts

I used a couple of tricks I like with the LEDs.  First, I use a black Sharpee to mark the negative lead so that when I bend it, I can still identify it.  Then I take the needle nose pliers to pinch each lead and wrap it into an “eye” so that I can thread wires through them.  This eliminates the need to solder – an advantage when working with little kids.

larry-led

I put the coin cell batteries in the battery holder and attached the wires to the positive and negative leads of the LEDs.

larry-eyes

 I used a hole punch to punch holes in the crayon box and drew eyes and mouth on the box.  I glued the orange fleece on the inside of the box using the hot glue and reinforced it with tape.

larry-hair

I glued the red pom-pom on the front of the box and voila, Larry Leftovers!

leftover-larry

 

 

Categories: Circuits, Engineering, Technology | Leave a comment

Lily Pad Arduino Doll Fleet

These dolls were created to introduce students to coding in Arduino.  Their construction in similar to the Arduino Ugly Doll (see earlier post for details on this doll), but their components are slightly different.  Each one has two white LEDs sewn onto the eyes, one RGB LED sewn onto the nose, and a piezo sewn onto the mouth.  They each have a LilyPad Arduino and a battery holder sewn onto the back.  

I made a pattern out of scrap paper and cut the bodies and face parts out of different colored fleece.

img_2546

Next I sewed all the facial features onto the front piece of each doll.  Then I sewed the back piece to one side of the doll so that the doll could open like a book.

img_4738

The LilyPads, battery holders, LEDs and piezos were sewn on by hand using conductive thread.  Below you see the faces.

img_5314

This picture shows the circuitry created with conductive thread.  The LEDs and the piezo are each attached to different pins on the LilyPad Arduino.  A piece of fleece was sewn between two crossed threads and on top of the circuitry on the back of each doll to prevent short circuits.

img_5318

Here is my hand-drawn circuit map.

img_5323

These two diagrams of the circuitry were created by my friend, Tom Gallo, using a program called Fritzing.

circuitry-1

circuitry-2

The seam around the doll was completed and the dolls were stuffed with polyfill.  Here are the eight dolls lined up and ready to go to school.  

img_5322

The students will write code in Arduino to control the blinking of the LED eyes, the blinking and color of the RGB nose, and the melodies and tones played by the piezo mouth.

Categories: Arduino, Circuits, eTextiles, Technology | Leave a comment

LED Painting

This project could be completed with any kind of 2-D (more on that concept later) art work.  The basic idea is a flat piece of art with LEDs behind or on top of the work.

For the first one, I painted a simple watercolor which included white dots and tree trunks.  The white was preserved with masking fluid which was rubbed off after the paint had dried.  

painting

Tracing paper was placed over the painting to mark where the LEDs would go.

img_2688

The circuit was drawn on foam core, using the tracing paper as a guide for the placement of the LEDs.  

diagram

A parallel circuit made of copper tape was placed on the foam core the the LEDs were soldered onto the tape.  Note the break in the tape which will form the pressure switch.  

img_2693

The tracing paper was used again to mark the placement of the switch on the back of the watercolor painting.

switch

Foam dots with double-sided adhesive were placed around the LEDs and the switch to hold the watercolor painting away from the foam core. The dots were ¼” inch tall.

spacers     circuit-closeup

The original plan was for the battery to be between the two layers, but I realized this would make it difficult to change the battery when the power was depleted.  So I sliced through the foam care and threaded the tape through the slots to the back.

battery-cutthrough     battery

When the pressure is placed on the painting in the location of the switch, the circuit is completed and the LEDs light up.  When the pressure is released the LEDs go out.  The thickness of the watercolor paper and the layers of paint made it difficult to see the light unless the painting was viewed in a dimly lit room.  A friend suggested cutting tiny holes in the paper.  But I started to think about the quality of watercolor paper and how mistakes can be removed by scrubbing, sanding, or scraping.  So this 2D work of art really had a bit of 3D depth to it, which might allow me to remedy the light problem.  I took a little Exacto knife and scraped away layers of paint and paper until I was satisfied with the thickness of the paper over each LED.

scrape-paper     After doing this, the LEDs easily shone through the paper even in a well-lit room.  

finished

Categories: Art, Circuits, Technology | Leave a comment

LED Felt Hat

LED Felt Hat

This hat is one of those wandering projects that starts out with one experiment and leads down a meandering lane called “What if I try this?”

After creating an LED eTextile card with one LED on it, I wondered how many LEDs I could actually add on a 2032 coin cell battery.  I texted my awesome colleague, Shane Diller, and asked him because he knows everything about electrical circuits.  He didn’t know.  But he did suggest using a parallel circuit if I was going to experiment.  So I decided I was willing to sacrifice some LEDs and a little time to finding out.  I soldered five white LEDs to some copper tape.  I tested them out with a 2032 battery and they worked just fine.

img_5157

Next I taped five more lights to the circuit and tried again.  They all lit.  I found a two coin cell battery holder with an on/off switch and taped it to the end of the circuit.  I put two 2032 batteries in it and all the LEDs lit up very brightly.  

img_5159

So I went ahead and soldered the LEDs and the battery holder to the copper tape.  

 

img_5166

It looked great.  Now what?  

 

I took a nap, went for a walk, worked on a paper I’m writing for a class.  Then I thought about hats.  

 

I had some multi-colored felt that I had made last summer out of wool bats given to me by my friend Sonja.  I had added bits of turquoise silk that my friend Sidney had given me.  It has a wonderful soft texture but the shape and size had not suggested anything to me.  It would be perfect for a pill box hat.  And I just happened to have a pattern.

img_5183

I pieced the top of the hat to take advantage of the embedded silk.  It made a nice contrast to the dull colors of the felt.

img_5184

The hat has a stabilizing foundation of heavy weight Pellon interfacing.  This makes the hat keep its shape even when it is not being worn.  My original plan was to line the hat with some royal blue polyester fleece I had on hand.  But that idea changed later.

Constructing the the hat was a pretty quick process.  There are only two pieces and two seams.  I took the soldered circuit and pinned it to the outside of the hat.  

img_5185

I decided it would be fun to use turquoise sparkly DMC embroidery floss to sew the copper tape to the hat.  I used a herringbone stitch.

 img_5186

Next I decided to add ceramic beads in between each LED.  I had made these beads last summer with clay and glaze Sonja gave me.  

img_5205

At this point, I decided I didn’t like the royal blue lining idea.  We made a quick trip to JoAnn Fabrics where I found some turquoise satin.  Much better.

img_5187

I used a scrap felt to make a pocket on the back for the battery holder.

img_5204

And voila!  The finished hat!

img_5203

Categories: Art, Circuits, eTextiles, Technology | Leave a comment

eTextile Holiday Card

LED Holiday Card

Here is the process I used to create an e-textile holiday card with LEDs sparkling in the winter sky.  I started with scraps of fabric left over from various projects.  This included several cotton prints, white felt, and some heavy interfacing.  The interfacing acted as a stabilizer for the card.

img_5175

I sewed several pieces of fabric onto the interfacing to create a snowy landscape.

img_5171

 

Using a decorative embroidery stitch, I sewed across the top of the white felt hills.

img_5172

 

Then I glued on tiny little fabric triangles to represent evergreen trees.

img_5173

To cover the raw edge, I sewed bias tape around the edges.

img_5174

 

Then came my new adventure – soldering.  I didn’t even know we had a soldering iron until my husband brought it in from the garage and showed me how to use it.  To create the circuit for the LEDs, I used size 22 coated wire, solder, flux, a soldering iron, six white LEDs, and a 2032 coin cell battery.  I used a wire cutter/stripper to cut the wire and strip off the plastic coating and needle nose pliers to help bend the wire.

img_5182

 

Here is my first attempt at soldering.  I am embarrassed at how messy it is, but it works.

img_5158-1

 

Next I sewed the circuit on the back of the fabric card, cutting tiny holes for the LEDs.  I stitched around each one to secure it to the fabric. The little pentagon of white felt is insulating two wires that were crossing and creating a short circuit.  

img_5180

I sewed the battery holder to the back of the card and slipped in the coin cell battery.  The battery holder has an on/off switch so that the lights are not always on.  The final card is shown below.  

img_5181

Categories: Art, Circuits, Technology | Leave a comment

Blog at WordPress.com.